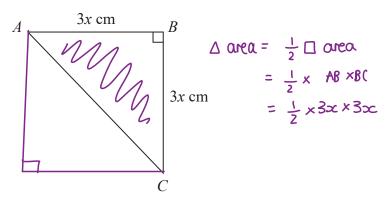

1. Here is a rectangle.

The length of the rectangle is 7 cm longer than the width of the rectangle.

4 of these rectangles are used to make this 8-sided shape.

The perimeter of the 8-sided shape is 70 cm.

Work out the area of the 8-sided shape.


Let a be width of the rectangle

$$70 = 8\infty + 42$$
 (-42)

Area of rectangle = width * length
=
$$x(x+7)$$

= $3.5 \times (3.5+7)$
= 3.6×10.5
= 36.25

147 cm²

2. ABC is an isosceles right-angled triangle.

The area of the triangle is 162 cm²

Work out the value of x.

Area of
$$\triangle$$
 - Setting up an equation in x

$$3x \times 3x \times \frac{1}{2} = 162$$

$$\frac{9}{2}x^2 = 162$$

$$x^2 = 162 \times 2$$

$$x = \sqrt{36}$$

$$x = \sqrt{36}$$

$$x = \sqrt{36}$$

$$x = \sqrt{36}$$

$$x = 6$$

The equation in x

$$x = \sqrt{36}$$

$$x = \sqrt{36}$$

$$x = \sqrt{36}$$

$$x = \sqrt{36}$$

$$x = 6$$

The equation in x

$$x = \sqrt{36}$$

$$x = \sqrt{36}$$

$$x = 6$$

The equation in x

$$x = \sqrt{36}$$

$$x = \sqrt{36}$$

$$x = 6$$

The equation in x

$$x = \sqrt{36}$$

$$x = \sqrt{36}$$

$$x = 6$$

The equation in x

$$x = \sqrt{36}$$

$$x = \sqrt{36}$$

$$x = \sqrt{36}$$

$$x = 6$$

The equation in x

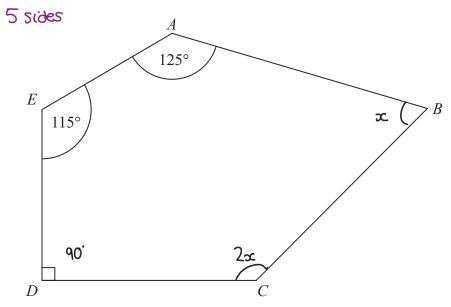
$$x = \sqrt{36}$$

$$x = \sqrt{36}$$

$$x = \sqrt{36}$$

$$x = 6$$

The equation in x


$$x = \sqrt{36}$$

$$x = \sqrt{36}$$

$$x = 6$$

(Total for Question is 3 marks)

ABCDE is a pentagon.

Angle $BCD = 2 \times \text{angle } ABC$

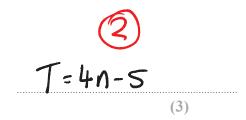
Work out the size of angle *BCD*. You must show all your working.

Sum of interior angles of a pentagon:

$$(n-2) \times 180 = (5-2) \times 180$$
 \bigcirc
= 180×3
= 540° \bigcirc

Setting up an equation in ∞ :

$$x + 2x + 90 + 115 + 125 = 540$$
 (1)
 $3x = 210$ (1)
 $x = 70$


4. Ben is n years old.

Chloe is twice as old as Ben.

Dan is five years younger than Ben.

The total of Ben's age, Chloe's age and Dan's age is T years.

(a) Find a formula for T in terms of n.

(b) In the table below, put a tick (\checkmark) in the box next to the identity.

3h + 2 = 14	
3a+4b-2c	
$A=\pi r^2$	/
5m-3m=2m	
$x + 7 \leqslant 12$	

An equation which is always true no matter what values are Substituted

(1)